利用ANSYS对松耦合变压器进行三维仿真
px; BORDER-LEFT-WIDTH: 0px; BORDER-BOTTOM-WIDTH: 0px; MAX-WIDTH: 560px; WORD-SPACING: 0px; FONT: 12px/18px 宋体, arial; TEXT-TRANSFORM: none; COLOR: rgb(95,95,95); TEXT-INDENT: 0px; WHITE-SPACE: normal; LETTER-SPACING: normal; BACKGROUND-COLOR: rgb(255,255,255); BORDER-RIGHT-WIDTH: 0px; orphans: 2; widows: 2; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; border-image: initial" height=99 src="http://www.elecfans.com/article/UploadPic/2010-6/2010623115334503.jpg" width=480>
表2:材料属性

实体建模
松耦合变压器材料为锰锌铁氧体,结构为上下罐状磁环,按照磁环实际尺寸可建立三维模型。应用ANSYS10.0的Emag模块对变压器进行三维场路耦合仿真分析,变压器物理模型如图1所示。分析过程如下:

图1 变压器实物图
根据图1所示变压器物理模型进行实体建模,通过命令流或GUI方法对模型进行自上而下的建模,三维模型如图2所示。

图2 ANSYS三维模型
然后进行网格划分,同样也可以采用GUI和命令流两种操作,网格划分有多种划分方式,在这里主要采用了三维自由网格划分。
1 2 3 4 5
表2:材料属性

实体建模
松耦合变压器材料为锰锌铁氧体,结构为上下罐状磁环,按照磁环实际尺寸可建立三维模型。应用ANSYS10.0的Emag模块对变压器进行三维场路耦合仿真分析,变压器物理模型如图1所示。分析过程如下:

图1 变压器实物图
根据图1所示变压器物理模型进行实体建模,通过命令流或GUI方法对模型进行自上而下的建模,三维模型如图2所示。

图2 ANSYS三维模型
然后进行网格划分,同样也可以采用GUI和命令流两种操作,网格划分有多种划分方式,在这里主要采用了三维自由网格划分。
1 2 3 4 5

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW
或用微信扫描左侧二维码