电容为什么会爆炸?关于电容的这些事你都知道吗?

时间:2023-05-31来源:

前言

电容相信大家都不陌生,就算没有见过也听过,在现在的生活中,电容是必不可少的元件之一,大到线路,小到一个小小的电子主板,特别是单相电机的启动,都无不需要电容。

所谓电容,就是容纳和释放电荷的电子元器件。电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上;造成电荷的累积储存,最常见的例子就是两片平行金属板。

在两个正对的平行金属板中间夹上一层绝缘物质(电介质),就构成了最简单的电容器,叫平行板电容器,两个金属板叫电容器的极板。任意两个彼此绝缘又相隔很近的导体,都可以看成是一个电容器。

电容的工作原理

电容的工作原理很简单,比如家里的自来水管,供水端经过长途跋涉,水量免不了会时大时小。若是直接供给用户使用,就会感觉到出水时大时小。而通常自来水公司每隔一段距离就会建一个水塔。这个水塔的作用就是储水,能将不稳定的水源,稳定地送到每家每户。

这个水塔就对应电子学里面的电容,电容的作用是储能,可将不稳定的电能,变成稳定的电能后传送给电路。理想的电容本身并不消耗电能量,它吸收多少能量就会放出多少电能量。当输入的电压波动时,电容才会产生电流,因为会进行充电或放电,当电压稳定时,就不会产生电流,称之为“隔直流通交流”。

电容的充电

把电容器的两个极板和电池的正负极相连,两个极板就分别带上了等量的异种电荷,这个过程叫充电,充电过程中电路中有短暂的充电电流。

截屏2023-08-15 23.09.03.png

充了电的电容,两极板间就有电场,电势差U,从电源获得的电能储存在电场中,这种能量叫电场能。电容器有储存电荷和电场能的本领。

电容的放电

把充电后的电容器两极板接通,两极板上的电荷中和,电容器不再带电,这个过程叫放电,并有短暂的放电电流。

截屏2023-08-15 23.08.29.png

放电后,两极板就不再有电场和电势差,电场能转化为其它形式的能。

电容器主要参数的标注方法

直标法

电解电容器或体积较大的无极性电容器:标称容量、额定电压及允许偏差。

体积较小的无极性电容器:标称容量、额定电压及允许偏差。

容量单位:微法(μF)、納法(nF)、皮法(pF)

如:1p2表示1.2pF;1n表示1000pF;10n表示0.01μF;2μ2表示2.2μF。

数码标注法

数码标注法一般为三位数码表示电容器的容量,单位pF 。其中前两位数码为电容量的有效数字,第三位为倍乘数,但第三位倍乘数是9时表示×10 -1。

如: 

101表示:10 ×101 = 100pF

102表示:10 ×102 = 1000pF

103表示:10 ×103 = 0.01μF

104表示:10 ×104 = 0.1μF

223表示:10 ×103 = 0.022μF

474表示:10 ×104 = 0.47μF

159表示:10 ×10–1 = 1.5pF

色标法

色标法:在电容器上标注色环或色点来表示电容量及允许偏差。

四环色标法:第一、二环表示有效数值,第三环表示倍乘数,第四环表示允许偏差(普通电容器)。

五环色标法:第一、二、三环表示有效数值,第四环表示倍乘数,第五环表示允许偏差(精密电容器)。

如:

棕、黑、橙、金   表示其电容量为0.01μF,允许偏差为±5%

棕、黑、黑、红、棕   表示其电容量为0.01μF,允许偏差为±1%

电容的分类

瓷介电容器(CC)

截屏2023-08-15 23.06.57.png

结构:用陶瓷材料作介质,在陶瓷表面涂覆一层金属(银)薄膜,再经高温烧结后作为电极而成。瓷介电容器又分:1类电介质(NPO、CCG);2类电介质(X7R、2X1);3类电介质(Y5V、2F4)瓷介电容器。

涤纶电容器(CL)

截屏2023-08-15 23.06.02.png

结构:涤纶电容器,是用有极性聚脂薄膜为介质制成的具有正温度系数(即温度升高时,电容量变大)的无极性电容。

聚苯乙烯电容器(CB)

截屏2023-08-15 23.05.43.png

结构:有箔式和金属化式两种类型。常用的型号有CB10、CB11(非密封箔式)、CB14~16(精密型)、CB24、CB25(非密封型金属化)、CB80(高压型)、 CB40 (密封型金属化)等系列。

聚丙烯电容器(CBB)

截屏2023-08-15 23.05.13.png

结构:用无极性聚丙烯薄膜为介质制成的一种负温度系数无极性电容。有非密封式(常用有色树脂漆封装)和密封式(用金属或塑料外壳封装)两种类型。常用的箔式聚丙烯电容:CBB10、CBB11、CBB60、CBB61等;金属化式聚丙烯电容:CBB20、CBB21、CBB401等系列。

独石电容器

截屏2023-08-15 23.04.52.png

结构:独石电容器是用钛酸钡为主的陶瓷材料烧结制成的多层叠片状超小型电容器。常用的有CT4 (低频) 、CT42(低频)、CC4(高频)、CC42(高频)等系列。

云母电容器(CY)

截屏2023-08-15 23.04.13.png

结构:云母电容器是采用云母作为介质,在云母表面喷一层金属膜(银)作为电极,按需要的容量叠片后经浸渍压塑在胶木壳(或陶瓷、塑料外壳)内构成。常用的有CY、CYZ、CYRX等系列。

纸介电容器(CZ)

截屏2023-08-15 23.03.44.png

结构:纸介电容器是用较薄的电容器专用纸作为介质,用铝箔或铅箔作为电极,经卷饶成型、浸渍后封装而成。常见有CZ11、CZ30、CZ31、CZ32、CZ40、CZ80等系列。

金属化纸介电容器(CJ)

截屏2023-08-15 23.01.46.png

结构:金属化纸介电容器采用真空蒸发技术,在涂有漆膜的纸上再蒸镀一层金属膜作为电极而成。常见有CJ10、CJ11等系列。

铝电解电容器(CD)

截屏2023-08-15 23.01.22.png

结构:有极性铝电解电容器是将附有氧化膜的铝箔(正极)和浸有电解液的衬垫纸,与阴极(负极)箔叠片一起卷绕而成。外型封装有管式、立式。并在铝壳外有蓝色或黑色塑料套。

钽电解电容器(CA)

截屏2023-08-15 23.00.51.png

结构:有两种形式:1. 箔式钽电解电容器,内部采用卷绕芯子,负极为液体电解质,介质为氧化钽。型号有CA30、CA31、CA35、CAk35等系列。2. 钽粉烧结式,阳极(正极)用颗粒很细的钽粉压块后烧结而成。封装形式有多种。

聚合物钽电容器

与大多数电容技术不同,固体聚合物钽电容器不使用阴阳极片。阳极由钽粉烧结成的钽颗粒制成。这种颗粒经过阳极氧化处理,整个阳极表面形成五氧化二钽(Ta2O5)介质层。然后,用高导电聚合物浸渍氧化颗粒用作阴极。

经过处理,导电聚合物层涂覆石墨,然后涂覆一层金属银,在电容芯与外部电极(引线框或其他电极)之间形成导电面。

模塑片式聚合物钽电容器元件封装在塑料树脂中,如环氧树脂材料。选择的模塑化合物符合 UL 94 V-0 耐火等级和 ASTM E-595 脱气要求。组装后,对电容器进行测试和检查,确保长期寿命和可靠性。

截屏2023-08-15 23.00.21.png

模塑聚合物剖面示意图

云母微调电容器(CY)

截屏2023-08-15 22.59.37.png

结构:云母微调电容器由定片和动片构成,定片为固定金属片,其表面贴有一层云母薄片作为介质,动片为具有弹性的铜片或铝片,通过调节动片上的螺钉调节动片与定片之间的距离,来改变电容量。云母微调电容器有单微调和双微调之分。

瓷介微调电容器(CC)

截屏2023-08-15 22.59.05.png

结构:瓷介微调电容器是用陶瓷作为介质。在动片(瓷片)与定片(瓷片)上均镀有半圆形的银层,通过旋转动片改变两银片之间的相对位置,即可改变电容量的大小。

薄膜微调电容器

截屏2023-08-15 22.58.36.png

结构:薄膜微调电容器是用有机塑料薄膜作为介质,即在动片与定片(动、定片均为半圆形金属片)之间加上有机塑料薄膜,调节动片上的螺钉,使动片旋转,即可改变容量。薄膜微调电容器一般分为双微调和四微调。有的密封双连或密封四连可变电容器上自带薄膜微调电容器,将微调电容器安装在外壳顶部,使用和调整就更方便了。

空气可变电容器(CB)

截屏2023-08-15 22.58.02.png

结构:电极由两组金属片组成。一组为定片,一组为动片,动片与定片之间以空气作为介质。当转动动片使之全部旋进定片时,其电容量最大,反之,将动片全部旋出定片时,电容量最小。空气可变电容器有单连和双连之分。

薄膜可变电容器

截屏2023-08-15 22.57.32.png

结构:薄膜可变电容器是在其动片与定片之间加上塑料薄膜作为介质,外壳为透明或半透明塑料封装,因此也称密封单连或密封双连和密封四连可变电容器。

电容的作用和用途

电容的作用和用途有很多种,如:在旁路、去耦、滤波、储能方面的作用;在完成振荡、同步以及时间常数的作用……下面来详细分析一下:

隔直流:作用是阻止直流通过而让交流通过。

截屏2023-08-15 22.55.47.png

旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 

截屏2023-08-15 22.54.57.png

旁路电容:旁路电容,又称为退耦电容,是为某个器件提供能量的储能器件。

它利用了电容的频率阻抗特性,理想电容的频率特性随频率的升高,阻抗降低,就像一个水塘,它能使输出电压输出均匀,降低负载电压波动。

旁路电容要尽量靠近负载器件的供电电源管脚和地管脚,这是阻抗要求。

在画PCB时候特别要注意,只有靠近某个元器件时候才能抑制电压或其他输信号因过大而导致的地电位抬高和噪声。

说白了就是把直流电源中的交流分量,通过电容耦合到电源地中,起到了净化直流电源的作用。如图C1为旁路电容,画图时候要尽量靠近IC1。

截屏2023-08-15 22.54.26.png

图C1

去耦电容:去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。

它的容量根据信号的频率、抑制波纹程度而定,去耦电容就是起到一个“电池”的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。

旁路电容实际也是去耦合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄放途径。

高频旁路电容一般比较小,根据谐振频率一般取0.1F/0.01F等。

而去耦合电容的容量一般较大,可能是10F或者更大,依据电路中分布参数、以及驱动电流的变化大小来确定。如图C3为去耦电容

截屏2023-08-15 22.53.15.png

图C3

它们的区别:旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源。

耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路 。

截屏2023-08-15 22.52.28.png

用电容做耦合的元件,是为了将前级信号传递到后一级,并且隔断前一级的直流对后一级的影响,使电路调试简单,性能稳定。

如果不加电容交流信号放大不会改变,只是各级工作点需重新设计,由于前后级影响,调试工作点非常困难,在多级时几乎无法实现。

滤波:这个对电路而言很重要,CPU背后的电容基本都是这个作用。

截屏2023-08-15 22.51.45.png

即频率f越大,电容的阻抗Z越小。当低频时,电容C由于阻抗Z比较大,有用信号可以顺利通过;当高频时,电容C由于阻抗Z已经很小了,相当于把高频噪声短路到GND上去了。

截屏2023-08-15 22.51.10.png

滤波作用:理想电容,电容越大,阻抗越小,通过的频率也越高。

电解电容一般都是超过1uF ,其中的电感成分很大,因此频率高后反而阻抗会大。

我们经常看见有时会看到有一个电容量较大电解电容并联了一个小电容,其实大的电容通低频,小电容通高频,这样才能充分滤除高低频。

电容频率越高时候则衰减越大,电容像一个水塘,几滴水不足以引起它的很大变化,也就是说电压波动不是你很大时候电压可以缓冲,如图C2:

截屏2023-08-15 22.50.03.png

图C2

温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。

截屏2023-08-15 22.49.34.png

分析:由于定时电容的容量决定了行振荡器的振荡频率,所以要求定时电容的容量非常稳定,不随环境湿度变化而变化,这样才能使行振荡器的振荡频率稳定。因此采用正、负温度系数的电容并联,进行温度互补。

当工作温度升高时,Cl的容量在增大,而C2的容量在减小,两只电容并联后的总容量为两只电容容量之和,由于一个容量在增大而另一个在减小,所以总容量基本不变。

同理,在温度降低时,一个电容的容量在减小而另一个在增大,总的容量基本不变,稳定了振荡频率,实现温度补偿目的。

计时:电容器与电阻器配合使用,确定电路的时间常数。

截屏2023-08-15 22.49.14.png

输入信号由低向高跳变时,经过缓冲1后输入RC电路。

电容充电的特性使B点的信号并不会跟随输入信号立即跳变,而是有一个逐渐变大的过程。

当变大到一定程度时,缓冲2翻转,在输出端得到了一个延迟的由低向高的跳变。

时间常数:以常见的RC串联构成积分电路为例,当输入信号电压加在输入端时,电容上的电压逐渐上升。

调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。

截屏2023-08-15 22.48.34.png

变容二极管的调谐电路

因为lc调谐的振荡电路的谐振频率是lc的函数,我们发现振荡电路的最大与最小谐振频率之比随着电容比的平方根变化。

此处电容比是指反偏电压最小时的电容与反偏电压最大时的电容之比。

因而,电路的调谐特征曲线(偏压一谐振频率)基本上是一条抛物线。

整流:在预定的时间开或者关半闭导体开关元件。

截屏2023-08-15 22.47.43.png

储能:储存电能,用于必要的时候释放。

例如相机闪光灯,加热设备等等。

截屏2023-08-15 22.46.52.png

一般地,电解电容都会有储能的作用,对于专门的储能作用的电容,电容储能的机理为双电层电容以及法拉第电容。

其主要形式为超级电容储能,其中超级电容器是利用双电层原理的电容器。

当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷。

在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场。

这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。

电容爆炸

当电容施加的电压超过其耐压时,或者对于有极性电解电容电压极性加反时,都会引起电容漏电流急剧上升,造成电容内部热量增加,电解液会产生大量的气体。

为了防止电容爆炸,在电容外壳的顶部压制有三条凹槽,这样便于电容顶部在高压下率先破裂,释放内部的压力。

截屏2023-08-15 22.45.07.png

电解电容顶部的爆破槽

但是,有的电容在制作过程中,顶部的凹槽压制不合格,电容内部的压力会使得电容底部的密封橡胶被弹出,此时电容内部的压力突然释放,就会形成爆炸。

无极性电解电容爆炸

下图显示了手边一颗无极性电解电容,它的容量为1000uF,耐压16V。在施加电压超过18V之后,漏电流突然增加,电容内部的温度和压力增加。最终,电容底部的橡胶密封圈炸开,内部电极像爆米花一下被砸松散。

640 (1).gif

无极性电解电容过压爆破

通过在电容上捆绑一个热电偶,可以测量电容的温度随着施加的电压增加变化的过程。下图显示了无极性电容在电压增加过程中,当施加的电压超过耐压值,内部温度继续增高的过程。

截屏2023-08-15 22.44.20.png

电压与温度之间的关系

下图显示了在同样的过程中,流过电容的电流变化。可以看到,电流的增加是造成内部温度上升的主要原因。在这个过程中,电压是成线性增加,随着电流急剧升高,供电电源内组使得电压下降。最终,当电流超过6A之后,随着一声巨响,电容炸开。

截屏2023-08-15 22.43.05.png

电压与电流之间的关系

由于无极性的电解电容内部体积大,电解液多,所以在过流之后所产生的压力巨大,导致了外壳顶部的泄压槽没有破裂,而电容底部的密封橡胶被炸开了。

极性电解电容爆炸

对于有极性的电解电容,施加电压。当电压超过电容的耐压时,漏电电流也会急剧上升,造成电容过热爆炸。

下图显示了有极限的电解电容,它的容量为1000uF,耐压16V。在过压之后,通过顶部泄压槽释放内部气压过程,因此就避免了电容爆炸过程。

640.gif

极性电解电容过压爆破

下图显示了电容的温度随着施加电压的增加变化的情况,当电压逐步接近电容的耐压后,电容的留点电流增加,内部的温度继续上升。

截屏2023-08-15 22.38.54.png

电压与温度之间的关系

下图是电容的漏电电流变化情况,标称为16V耐压的电解电容,在测试过程中,当电压超过15V之后,电容的漏电便开始急剧上升了。

截屏2023-08-15 22.37.44.png

电压与电流之间的关系

通过前面两个电解电容的实验过程遭遇,也可以看到对于此类1000uF普通电解电容耐压限制情况。为了避免电容被高压击穿,因此在使用电解电容的时候,需要根据实际电压波动情况,留下足够的余量。

关键词: 电容 爆炸

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章


用户评论

请文明上网,做现代文明人
验证码:
查看电脑版