深度解读激光增材制造中的过程监控

嵌入式系统 时间:2018-07-24来源:网络


Concept Laser的QMcoating模块对分层重涂覆过程进行了更积极地控制。它可以在粉末铺放时监测层的表面,对每一层或是整个构建区域的层厚变化进行检测并补偿(图2)。

监控熔池

由于增材制造零件的显微结构属性由材料的热演化过程来决定,因此增材制造过程监控的首要目标是捕获零件中所有三维位置的温度。然而,这种所谓的“热图(heat map)”涉及的数据量大得惊人。如今,随着传感器、信号处理算法以及数据存储方法的不断进步,我们可以着手解决这些挑战——逐点收集并存档热力信息。OEM设备供应商、创新型的小公司以及政府研究机构都有相关的开发计划。

他们的任务是收集能直接或间接显示激光焦点周围某一小区域(称为“熔池”)温度的信息。理想情况下,可以在约1mm2的单个区域内进行直接的空间分辨温度测量。此外,通过借鉴激光焊接技术,他们也在努力测量熔池的大小和形状。但是相比激光焊接或送粉式增材制造工艺来说,这里的任务明显难度更大;这是因为,高的光束扫描速度(~1m/s)和所要求的精细的空间分辨率意味着必须采集和处理高带宽信号以及存储海量的数据。


目前正在研发的两种熔池传感方法包括:对发射的光进行成像和收集发射的光。就成像而言,红外线(IR)和可见光照相机正在开发之中,虽然其所需的帧率非常高(每秒数千帧),几乎所有设备都不能实现,但是目前最高端的红外设备可以达到该帧率。对光发射检测来说,采用的是光学测温或光谱的变化。最常见的装置包括一个光电二极管(在上游带有或不带红外带通滤波器)。两个这样的滤波探测器可以用来实现双色测温技术。

在许多案例中,设备供应商正在开发结合了成像和发射传感的复合传感器。图3简要地显示了Concept Laser公司是如何在其QMmeltpool模块中实现该方案的。具有1×1mm2观测区(高的空间分辨率)的同轴可见光相机获取图像的帧率高达每秒4000帧。如果需要的话,光电二极管信号甚至可以提供更高频率的信息。为了应对潮水般涌来的数据,每一整个分层的信息被合并在一起并存储,而不是存储每一层内所有的单个点的信息。根据Bechmann所说,相机可以拍摄“非常详细的图片”,可以检测由于透镜污染或激光器老化所引起的低能量熔池的情况,以及粉末计量因素的偏差。图4显示了降低激光功率对零件造成的差异,包括较小的“窗户”。


SLM Solutions正在开发的Melt Pool Control模块主要是在两个波长进行快速的单点红外发射测量。通过分析将数据提取出来形成热能的二维图像。数据采集和分析是在每个点(~ 70μs)完成的,有效采样率较高(~ 14kHz)。更重要的是,该系统很快就能以这种速度动态地调整激光输出功率,根据熔池信息实现真正的闭环功率控制。图5显示的微细栅格试验结构可以明显看到熔池控制带来的影响。


EOS公司实现熔池监控的方法有稍许不同。该公司不是通过公司内部研发,而是与plasmo Industrietechnik公司(奥地利维也纳)展开了合作,后者的fastprocessobserver系统已经在激光焊接领域证明了自己。该系统利用一个或多个离轴光电二极管来收集激光诱导等离子体的宽频带光发射。采用大量的专利信号处理算法从时间和频率方面对信号进行分析,从而检测出异常情况的发生。当系统参考了已知的会产生缺陷和没有缺陷的工艺条件后,就可以将检测到的异常与不同类型的缺陷一一联系起来。粉末床增材制造面临的挑战在于所需要的采样和信号处理速度要高得多。截至本文发表时,plasmo的监控系统已经与EOS的设备集成在一起,并且正在被一个重要的终端用户评估。

总结与展望

在2011年年底,GE的增材制造实验室经理Prabhjot Singh观察到:“增材制造的零件由数以千计的分层构建而成,每一层的问题都有可能使得整个零件构建失败。我们仍然不明白,为什么不同设备生成的零件会略有不同,甚至同一台设备在不同的一天中生成的零件也会略有不同。”

到了如今,这一评估在很大程度上仍然正确。与此同时,包括GE航空发动机公司在内的先驱者多年来一直研究他们的增材制造设备的细微差别,表征工艺窗口和灵敏度,创建工艺数据库和确认每台设备是否合格。他们将可能在未来12至18个月内开始提速其生产,他们没有对其生产设备进行过程监控或闭环激光功率控制,而是凭借自己深厚的知识储备来生产质量优良的零件。

如今,增材制造过程监控所借鉴的传感技术大多来自激光焊接等成熟工艺的经验。因此,它们有可能不是实时检测增材制造过程中的异常的最佳手段。金属增材制造仍然处于发展的早期阶段,设备和粉末材料的相关技术在突飞猛进。传感和数据分析技术也是如此。目前正在对激光粉末床的相互作用进行物理上的互动模拟,并建立详细的数据库,包括材料性能、工艺参数和粉末特征。未来几年,这些技术将可能帮助制造商研发出最理想的监测器和传感器,逐点监测熔池或是接近熔池的点。同时,快速的创新会继续进行,尽管真正强有力的过程监控与控制可能仍然需要数年之久才能实现。考虑到主要的制造商在计划批量生产增材制造的金属零件,我们期待看到更多的关注投放到这一领域以及更多积极的研发行动。和增材制造过程监控相关的各种技术正在你追我赶,且看谁能胜出。

1 2

关键词: 激光增材 制造 监控

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章


用户评论

请文明上网,做现代文明人
验证码:
查看电脑版