周末烧脑:论频谱中负频率成分的物理意义

时间:2018-07-17来源:网络

  在对任何信号进行傅立叶分析时,得出的频谱为复数,且其频率范围将从-∞~∞。对于负频率以及该范围的频谱,应当如何理解?它有没有物理意义?是一个还缺乏讨论,因而没有统一看法的问题,本文将对此进行讨论。

  摘要:本文讨论了信号经过傅立叶变换所得频谱的物理意义,其中着重于负频率成分。许多信号与系统的教材中,都认为负频率成分没有物理意义。本文以多方面的实例证明了负频率成分不但具有明确的物理意义,而且有重要的工程应用价值。文章还用Matlab程序演示了如何用几何方法求傅立叶反变换,把集总频谱合成为时域信号,从中也可鲜明地看出负频率成分的意义。

  1.负频率与复信号

  频率 f 的原始定义是每秒出现的次数,可用以衡量机械运动、电信号、乃至任何事件重复出。

  (a) 三维图形

  (b)x-y 平面的二维图形现的频度,这当然不存在

  有“负”的概念。当用频率描述圆周运动时(即进入了二维信号平面),产生了角频率 ω”的概念,从机械旋转运动出发,定义为角速度,对于周期运动,角速度也就是角频率。通常 θ以反时针为正,因此转动的正频率是反时针旋转角速度,负频率就是顺时针旋转角速度。正、负号是非常自然形成的,没有物理意义的有无问题。电的单位向量(电压或电流)围绕原点的转动,可以用表示,这是在电路中都清楚的。θ的正负所代表的物理意义从未有什么争议,它的导数的物理意义不言自明,取正取负都不影响定义,为什么取负就会失去物理意义了呢?在信号与系统课程中,为了简化问题,便于初学者掌握概念,开宗明义地把研究范围限定于实 信 号 f(t) , 也就是 在 电 压 旋 转 向 量中,只研究它在实平面或虚平面上的一个投影 sin(ωt)或 cos(ωt),研究复信号的特性与只研究实信号 sin(ωt)或 cos(ωt) 是两个不同的层次。前者是反映信号在空间的全面特性,如图1 所示。后者只研究了信号在一个平面(x-t或y-t组成的平面)上投影的特性。这就必然要丢掉一些重要的信息,以致 x=sin(ωt) 与sin(-ωt)在x-t平面中的波形没有任何差别,这是人们对负频率的意义产生疑问的直接原因之一。很显然,在x-t或y-t的平面内,是不可能看出旋转的。既看不到θ,更看不到ω。只有在x-y平面上才能看到这两个旋转参数。

  2.复信号与实信号的频谱

  同样,用ejtω或 sin(ωt)或 cos(ωt)作为核来做傅立叶变换所得的结果也是前者全面,后者片面。对实信号做傅立叶变换时,如果用指数为核,将得到双边频谱。以角频率为Ω的余弦信号为例,它有具有位于±Ω两处的、幅度各为 0.5、相角为零的频率特性。它的几何关系可以用图2表示。两个长度为 0.5 的向量,分别以±Ω等速转动,它们的合成向量就是沿实轴方向的余弦向量。而沿虚轴方向的信号为零。可见必须有负频率的向量存在,才可能构成纯 粹的实信 号 。 所以欧公式是有其明确的几何意义(即物理意义)的。在文献[1]中给出了动画,并给出了正、负数字频率的几何解释。


1 2

关键词:

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章


用户评论

请文明上网,做现代文明人
验证码:
查看电脑版