斯坦福机器学习公开课笔记11—贝叶斯正则化、在线学习、ML应用建议

时间:2017-04-10来源:网络

  本文对应ML公开课的第11个视频。前半部分仍然是讲学习理论的内容,后半部分主要讲述一些在具体应用中使用ML算法的经验。学习理论的内容包括贝叶斯统计和正则化(Bayesianstatistics and Regularization)、在线学习(OnlineLearning)。ML经验包括算法的诊断(Diagnostics for debugging learning algorithms)、误差分析(error analysis)、销蚀分析(ablativeanalysis)、过早优化(premature optimization)。

    

 

    

 

    

 

    

 

    

 

    

 

    

 

 

 

 

 

 

 

 

 

关键词: 斯坦福 器学习

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版