恒压/恒流输出式单片开关电源的设计原理
2恒压/恒流输出式开关电源的电路设计
电压及电流控制环的单元电路如图3所示。
21电压控制环的设计
恒压源的输出电压由下式确定:
UO=UZ2+UF+UR1=UZ2+UF+IR1·R1(1)
式中,UZ2=62V,UF=12(典型值),需要确定的只是R1上的压降UR1。令R1上的电流为IR1,VT2的集电极电流为IC2,光耦输入电流(即LED工作电流)为IF,显然IR1=IC2=IF,并且它们随u、IO和光耦的电流传输比CTR值而变化。TOP200Y的控制端电流IC变化范围是25mA(对应于最大占空比Dmax)~65mA(对应于最小占空比Dmin),现取中间值IC=45mA。因IC是从光敏三极管的发射极流入控制端的,故有关系式(2)
在IC和CTR值确定之后,很容易求出IR1。单片开关电源须采用线性光耦合器,要求CTR=80%~160%,可取中间值120%。将IC=45mA,CTR=120%代入式(2)得出,IR1=375mA。令R1=39Ω时,UR1=0146V。最后代入式(1)计算出
UO=UZ2+UF+UR1=62V+12V+0146V
=7546V≈75V
22电流控制环的设计
电流控制环由VT1、VT2、R1、R3~R7、C8和PC817A等构成。下面需最终算出恒定输出电流IOH的期望值。图3中,R7为VT1的基极偏置电阻,因基极电流很小,而R3上的电流很大,故可认为VT1的发射结压降UBEI全部降落在R3上。则(3)
利用下面二式可以估算出VT1、VT2的发射结压降:(4)
(5)
式中,k为波尔兹曼常数,T为环境温度(用热力学温度表示),q是电子电量。当TA=25℃时,T=298K,kT/q=00262V。IC1、IC1分别为VT1、VT2的集电极电流。IS为晶体管的反向饱和电流,对于小功率管,IS=4×10-14A。
因为前已求出IR1=IF=IC2=375mA,所以
又因IE2≈IC2,故UR5=IC2R5=375mA×100Ω=0375V,由此推导出UR6=UR5+UBE2=0375V+0662=1037V。取R6=220Ω时,IR6=IC1=UR6/R6=471mA。下面就用此值来估算UBE1,进而确定电流检测电阻R3的阻值:
与之最接近的标称阻值为068Ω。代入式(3)可求得考虑到VT1的发射结电压UBE1的温度系数αT≈-21mV/℃,当环境温度升高25℃时,IOH值降为
恒流准确度为
与设计指标相吻合。
3反馈电源的设计
反馈电源的设计主要包括两项内容:
(1)在恒流模式下计算反馈绕组的匝数NB。之所以按恒流模式计算NB值,是因为此时UO和UFB都迅速降低(UO=UOmin=2V),只有UFB足够高时,才能确保恒流源正常工作。
(2)在恒压模式下计算出反馈电压额定值UFB。此时UO=75V,UFB也将达到最大值,由此求得UFB值,能为选择光耦合器的耐压值提供依据。
反馈电压UFB由下式确定:(6)
式中,UF2和UF3分别为VD2、VD3的正向导通压降。NS为次级匝数。从式(6)可解出(7)
在恒流模式下当负载加重(即负载电阻减小)时,UO和UFB会自动降低,以维持恒流输出。为使开关电源从恒流模式转换到自动重启状态时仍能给TOP200Y提供合适的偏压,要求UFB至少比恒流模式下控制电压的最大值UCmax高出3V。这里假定UCmax=6V,故取UFB=9V。将UFB=9V、UO=UCmin=2V、UF2=06V、UF3=1V、IO=IOH=0982A、R3=068Ω、NS=12匝一并代入式(7),计算出NB=367匝≈37匝(取整)。
在恒压模式下,UO=75V,最大输出电流IO=095A,再代入式(6)求得,UFB=26V,此即反馈电压的额定值。选择光耦合器时,光敏三极管的反向击穿
表1各项性能指标
型号规格 | 稳压范围(V) | 源电压效应 | 负载效应 | 效率 | 输出电压相对谐波含量 | 源功率因数 | 恢复时间(ms) | 体积:L×W×H(mm) | 整机重量(kg) |
---|---|---|---|---|---|---|---|---|---|
CWY-Ⅱ-5kVA | 150-260 | ≤3% | ≤5% | ≥89% | ≤3.5% | ≥0.95% | 10~90 | 510×710×830 | 170 |
CWY-Ⅱ-10kVA | ≥91% | 520×880×1050 | 320 |
电压必须大于此值,即U(BR)CEO>26V。常用线性光耦的U(BR)CEO=30V~90V。计算光敏三极管反向工作电压UIC2的公式为
UIC2=UFB-UCmin(8)
式中,UCmin为控制端电压的最小值(55V)。不难算出,UIC2=205V。这里采用PC817A型光耦合器,其U(BR)CEO=35V>205V,完全能满足要求。但在设计高压电池充电器时,必须选择耐高压的光耦合器。

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW
或用微信扫描左侧二维码