优化的BP神经网络在电子设备故障诊断中的应用

手机与无线通信 时间:2010-03-23来源:网络


设p1=r1=-E’(W1),式中E’(W1)是根据BP算法求出的负梯度。

(3)计算步长ak:

式中:En(W1)为误差函数对权值矢量W的二次导数。

(4)调整权值:

(5)如果k除以样本数N的余数为零时,pk+1=rk+1,否则计算新的搜索方向:

(6)如果梯度方向OrkO>ε,则置k=k+1,否则停止,Wk+1为所求权值矢量。

3诊断实例

现以一电子设备为诊断对象,验证优化的BP神经网络算法。样本数据从测试口测试获得,一共6个测试点,10个板卡故障。诊断步骤如下:

(1)故障特征提取

表1为实验测得的故障样本数据;表2为归一化后的数据,其激活函数采用S型函数f=1/(1+e-ax);表3为神经网络的目标输出模式,1表示有故障,0表示正常。





(2)BP网络的训练

取输入节点N1=6,输出节点N3=11,隐层节点采用,a取1~10,本实验中a取7(根据训练误差曲线调整而得),N2=15。学习率η=0.2,训练误差E0.005,最大训练次数n=1 000。图2为BP网络的训练误差曲线。


(3)BP网识别结果分析

①用样本自身数据输入训练好的神经网络中,其识别结果见表4。与故障模式对比分析可知,自身数据检测正确率为100%。可见,该网络达到了训练的要求。

1 2 3

关键词: 诊断 应用 故障 电子设备 BP 神经网络 优化

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版