图8 探头全伸时18声道平均速度归一化比较
由图8可以清晰地看到,相对于5Dup18声道的速度廓形(标准值),各流速点情况的速度廓形几乎都低于标准值,只有v=0.307m/s时靠近管道中心的几个声道(声道4、5、6、13、14、15)略高于标准值。从这个角度分析,各流速点18声道积分得到的流量值势必小于5Dup18声道积分流量值,造成测量误差均为负值。进一步分析,随着流速逐渐增大,速度廓形趋于平缓,即靠近管道中心的几个声道平均速度逐渐减小,且廓形有重合的趋势。当v=6m/s、v=8m/s时,测量误差增大的趋势逐渐减小且趋于稳定(表2)。用湍流速度分布理论可以解释这一结果:Re越大,管内速度分布越趋于平缓,且变化越小。因此可以推论,对于探头全伸情况,当流速大到一定程度,测量误差将不随来流速度变化而变化,趋于稳定。
表2 流速增大时的仿真结果

2.2 探头全缩仿真结果
与前述研究方法类似,以下仅给出v=0.994m/s时最短声道1和最长声道5上轴向速度分布图和声道截面上轴向速度等值线图,来说明探头全缩对流场造成的影响。
由图9可知,流体在流经探头位置时,由于在管壁内侧有一凹槽,流体在声道两端均会产生回流,出现负速度,使得沿声道速度分布基本对称(图10)。此外,凹槽内的流速相对较小,随着探头缩入管道内壁的长度逐渐减小,凹槽区逐渐减小,相应低流速区域也逐渐减小(图10)。
图9 声道截面轴向速度等值线图
图10 沿声道轴向速度分布
虽然探头全缩时对流场的影响与探头全伸时截然不同,但最终都会使各声道上产生负速度,进而使积分流量值偏小。表3给出了探头全缩情况时5个流速点的仿真结果。
关键词:
超声流量计
探头安装
测量影响
加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW
或用微信扫描左侧二维码