LDO噪声详解

模拟技术 时间:2012-12-24来源:网络

图 10 RMS 噪声与降噪电容的关系

图 10 利用 10 Hz 到 100 kHz 更宽融合范围,来捕捉低频区域的性能差异。CNR=1pF 时,两条曲线表现出非常高的RMS噪声值。尽管图 10 没有显示,但不管是否 CNR=1pF,都没有 RMS 噪声差异。这就是为什么在前面小节“放大参考噪声”中,我们把GRC被看作等于 1 的原因。

正如我们预计的那样,随着 CNR 增加,RMS 噪声下降,并在 CNR=1µF 时朝约12.5 µVRMS 的最小输出噪声汇聚。

CFF= 10 µF 时,放大器增益(1 + R1/R2)可以忽略不计。因此,方程式 8 可以简写为:

g10.jpg

正如我们看到的那样,VN(Other) 并不受 CNR 影响。因此,CNR 保持 10.5 µVRMS,其由图 6 所示数据曲线拟合度决定。方程式 10 可以表示为:

g10 2.jpg

接下来,我们要确定 GRC 降噪电容的影响,这一点很重要。图 10 中曲线的最小测量噪声,让我们可以将方程式10改写为:

g11.jpg

其中,求解VN(REF) × GRC 得到 2 µVRMS。增加 CNR 会使参考噪声从19.5 µVRMS降至 2 µVRMS,也就是说,在 10 Hz 到 100 kHz 频率范围,GRC 从整数降至 0.1 (2/19.5) 平均数。

图 11 显示了 CNR 如何降低频域中的噪声。与图 9 所示小 CFF 值一样,更小的 CNR 开始在高频起作用。请注意,CNR 最大值 1µF 表明最低噪声。尽管 CNR = 10 Nf 曲线表明最小噪声几乎接近于 CNR = 1 µF 的曲线,10-Nf 曲线显示30Hz 和100Hz 之间有一小块突出部分。

图 11 不同 CNR 值时输出频谱噪声密度与频率的关系.jpg

图 11 不同 CNR 值时输出频谱噪声密度与频率的关系

图8所示曲线(CNR = 1 pF),可改进为图 12(CNR = 1 µF)。图 8 显示 CFF = 100 Nf 和 CFF = 10 µF 之间几乎没有 RMS 噪声差异,但是图 12 清楚地显示出了差异。

图 12 中,不管输出电压是多少,CFF = 10 µF 和 CNR = 1 µF 均带来最低噪声值12.5 µVRMS,也即最小 GRC 值(换句话说,RC滤波器的最大效果)为 0.1。12.5 µVRMS 值为 TI 器件 TPS74401 的底限噪声。

图 12 噪声优化以后 RMS 噪声与前馈电容的关系.jpg

图 12 噪声优化以后 RMS 噪声与前馈电容的关系

当我们把一个新LDO器件用于噪声敏感型应用时,利用大容量CFF和CNR电容确定这种器件的独有本底噪声是一种好方法。图12表明RMS噪声曲线汇聚于本底噪声值。

其他技术考虑因素

降噪电容器的慢启动效应

除降噪以外,RC滤波器还会起到一个RC延迟电路的作用。因此,较大的CNR值会引起稳压器参考电压的较大延迟。

前馈电容器的慢启动效应

CFF利用一种机制绕过R1反馈电阻AC信号,而凭借这种机制,其在激活事件发生后VOUT不断上升时,也绕过输出电压反馈信息。直到CFF完全充电,误差放大器才利用更大的负反馈信号,从而导致慢启动。

为什么高VOUT值会导致更小的RMS噪声

在图8和图10中,相比VOUT=0.8V的情况,VOUT=3.3V曲线的噪声更小。我们知道,更高的电压设置会增加参考噪声,因此这看起来很奇怪。对于这种现象的解释是,由于CFF连接至OUT节点,因此除绕过电阻器R1的噪声信号以外,CFF还有增加输出电容值的效果。图12表明,由于参考噪声被最小化,我们便可以观测到这种现象。

RMS噪声值

由于TPS74401的本底噪声为12.5 µVRMS,它是市场上噪声最低的LDO之一。在设计一个超低噪声稳压器过程中,12.5 µVRMS绝对值是一个较好的参考值。

结论

本文深入探讨了LDO器件的基本噪声以及如何将其降至最小,具体包括:

l 每种电路模块对输出噪声的影响程度

l 参考电压如何成为主要的噪声源(经误差放大器放大)

l 如何抵销经过放大的参考噪声

l NR功能的工作原理

谨慎选择降噪电容器 (CNR) 和前馈电容器 (CFF),可以将 LDO 输出噪声最小化至器件独有的本底噪声水平。利用这种噪声最小化配置,LDO 器件便可保持本底噪声值,让其同非优化配置中常常影响噪声水平的一些参数无关。

给电路添加 CNR 和 CFF 时存在慢启动副作用,因此我们必须认真选择这些电容器,以实现快速升压。

本文所述方法已经用于优化 TI 的 TPS7A8101 LDO 的噪声。在 TPS7A8101 产品说明书第 10 页,不管参数如何变化,器件都拥有恒定的噪声值。

1 2 3

关键词: LDO 详解

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版