智能小区太阳能路灯的设计

光电显示 时间:2012-07-11来源:网络
容器充电时间。

  根据式( 1) ,13. 5 V、480 F 的电容器充电时间为( 充电电流为10 A)

  可以看出其充电时间是很短的,便于系统快速充电。

  超级电容的放电时间由公式:

  得到:

  如果放电截止电压为3. 5V,则放电时间为:

  由式( 2) 可以看出,超级电容器的储能对负载放电可以达到1. 6 h,延长了系统的供电时间。

  4. 太阳能控制器的设计

  太阳能路灯系统作为一种小型光伏系统,其控制器自身损耗电流应小于额定工作电流的1%,系统控制器电路的设计都选择了低功耗元器件,采用的是由集成运放构成的电压比较器作为控制电路,这种电路简单可靠、维护方便、成本低并且电路本身功耗也极低,是一种匹配性很好的电路。这种电路的关键是针对蓄电池的充放电特性设计一个比较好的电压回差,同时元器件的选择要可靠,再加上发光二极管构成的充放电状态指示电路,便成了一个具有实用功能的控制器电路,具有防蓄电池过放电、过充电功能。

  控制系统在光伏控制器和充电控制器基础上增加了超级电容,跨接在直流母线和地线之间,以便稳定直流母线的电压,并缓冲光电池提供的过大能量,然后放电给蓄电池,再提供给负载。

  光伏控制器在设计时通常采用升压电路,产生比光伏电池板两端更高的电压,以利于向蓄电池充电,同时也克服了传统电路中防倒灌二极管将蓄电池电压钳位在12 V 的弊端。但当光照不足时,若要使蓄电池能够继续充电,该控制电路会导致光伏电池的工作点脱离最大功率输出点,会使得光伏路灯系统的发电效率下降。因此设计控制系统时需预设弱光段的阈值,以实现在弱光下能通过超级电容缓冲来保证蓄电池正常充电的目的。

  若直接采用光伏电池对蓄电池充电,当光照较弱且存在其他干扰因素时其输出电压会不稳定,导致光伏电池在充电时难以保持在充电最小电压上,最后导致系统在该光照范围内不能对蓄电池正常充电。系统通过采用超级电容,把阴天时太阳电池的不稳定的输出能量蓄积起来,等到满足一定的电压条件时,通过升压电路把超级电容中的能量释放到蓄电池,升压电路图如图2 所示。这种采用超级电容的方式可以提高在太阳光照射不强时的发电效率。

智能小区太阳能路灯的设计

图2 充电升压电路

  LED 的控制电路比较简单,直流驱动即可,且其寿命可达10 万h。但是,驱动电流的大小在很大程度上影响着LED 的寿命,如果电流太大,则可能引起LED 光衰现象严重,且寿命减少。故必须合理设计其驱动电路,如图3 所示为用BUCK电路实现的LED 恒流控制电路。

智能小区太阳能路灯的设计

图3 LED 的恒流控制电路

  5. 防雷接地的设计

  LED 路灯的工作电压为12 V,属于安全电压,不做电气保护接地。但LED 路灯金属灯杆应做防雷接地,接地电阻经测试为8 Ω,符合要求。

  太阳能路灯照明系统的配置。

  本智能小区的一盏太阳能路灯的系统基本配置如表2 所示。

表2 太阳能路灯系统的基本配置

智能小区太阳能路灯的设计

  三、结束语

  智能小区太阳能路灯系统投入运行后,10 W的新型LED 光源足够用来照明,超级电容的应用能够保证给蓄电池合理充电,提高了充电效率,延长储能元器件的寿命,特别是阳光不太充足的时候,系统能够更好地存储能量,其储能可以连续供照明灯具使用7 天。系统的设计始终遵循智能建筑“节能和环保”的理念,应用了太阳能、长寿命的LED 光源和超级电容。如果再增加25 只超级电容器,则电容储能可以供给路灯一天的照明,随着超级电容容量的扩大和价格的降低,将其用做储能元件是可行的,智能小区的太阳能路灯系统也是对超级电容器应用的一个尝试。

1 2

关键词: 智能小区 太阳能路灯

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版